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Summary  

The basic property of a turbulent scalar field is its probability density function p(O; x, t). Here, for the first 
time, some exact solutions for p(O; x, t) are derived and discussed. These apply to the case of a finite mass of 
passive scalar - called a cloud for short - dispersing in simple, but conceptually important, turbulent flows, 
namely those associated with constant rates of strain. Extensions of the solutions to cases where the cloud is 
meandering, and where there are several clouds, are obtained. Applications of the results are discussed, with 
particular emphasis on their potential value for testing and validating approximate closure schemes applied to 
the evolution equation for p(O; x, t). 

I. Introduction 

I t  is now widely  recognized  that  there  are  m a n y  engineer ing p r o b l e m s  involving tu rbu len t  
d i f fus ion  p h e n o m e n a  whose sa t i s fac tory  p rac t ica l  reso lu t ion  requires  more  knowledge  
than  s imply  that  of  the  var ia t ion  with  pos i t ion  x and  t ime t of  C ( x ,  t) ,  the  (ensemble)  
mean  concen t ra t ion  of  the d ispers ing  scalar.  This  is pa r t i cu la r ly  true, pe rhaps ,  of  any  
s i tua t ion  where  the  assessment  of  hazards  is involved.  F o r  example ,  Birch, Brown and  
D o d s o n  [1] d e m o n s t r a t e d  very p o o r  cor re la t ion  be tween  the mean  concen t ra t ion  in a 
me thane  j e t  and  the p r o b a b i l i t y  that  igni tab le  cond i t ions  exist,  and  R ide  [2,3] has  
emphas i zed  the crucial  impor t ance  in  toxic i ty  assessment  of  f luc tua t ions  in the  scalar  
concen t r a t i on  abou t  i ts mean.  

Such recogni t ion  of  the  i nadequacy  of  conven t iona l  me thods  in m a n y  s i tua t ions  has  
genera ted  an upsurge  of  research in teres t  in the behav iou r  of  these f luctuat ions .  Let  
F ( x ,  t )  be  the concen t ra t ion  (in a rb i t r a ry  units)  of  the d i spers ing  scalar  in any  one  
rea l iza t ion  of  an  ensemble  of  releases.  The  centra l  i m p o r t a n c e  of  the concep t  of  an  
ensemble  has  been  emphas ized  elsewhere [4] and  is bas ic  to all  that  follows. Since the 
scalar  is be ing  d i spersed  in a tu rbu len t  flow, F ( x ,  t )  is a r a n d o m  var iab le  wi th  a 
p r o b a b i l i t y  dens i ty  funct ion  (p.d.f.)  p(O; x ,  t )  such tha t  

p(O; x, t)8o = e ( 0  r ( x ,  t) < 0 + 80) (1)  
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where the symbol P stands for " the probability that". Thus, for example, when 0~ and 8 2 

are the stoichiometric limits for a flammable gas, 

ff2p(O; x, t)dO = P(O, <~ r ( x ,  t)  ~ 0~) 
01 

(2) 

is the probability that ignitable conditions exist at position x and time t. It is obvious that 

oo 
fo p(O; x, t ) d O =  1 (3) 

and, in statistical parlance, the mean concentration C(x, t) and the mean square fluctua- 
tion c--7(x, t) are, respectively, the mean and variance of F(x, t). Thus 

C(x, t)= fo=Op(O; x, t)dO; ~(x, t)= fo=(O-C)2p(O; x, t)dO. (4) 

It needs noting that, in practice, there will be a maximum attainable concentration 0ma x 

(e.g. the initial scalar concentration) and a minimum attainable concentration Omi n (which 
will often be zero). Thus the limits 0 and oo in (3) and (4) can be replaced by Omin and Omax 
respectively; but, since p must be identically zero for 0 ~< 0 < 0mi . and for O > 0max, such 
replacement is unnecessary. 

The single most important statistical property describing fluctuations about the mean is 
~ ( x ,  t) and much research, both experimental (e.g. [5], [6], [7], [8], [9]) and theoretical (e.g. 
[10], [11]) has been devoted to it. But knowledge about c -7 is inadequate for many practical 
problems, and for complete scientific understanding, unless the form of p(O; x, t) is also 
known and, furthermore, is completely specified by the values of C and ~ as functions of 
x and t. As shown by measurements in [1] and elsewhere (e.g. [12], [13], [14]) however, real 
flows are not (unfortunately!) associated with p.d.f.s with such simple properties; in 
particular the functional dependence of p on O varies strongly with x. Further theoretical 
research on the p.d.f, is therefore highly desirable. 

Such research as has already been published has begun with the evolution equation for 
p(0;  x, t) which, for constant-density incompressible flow, can be written ([15], [16]) 

ap 
a-7-+ v .  v p  + v • { u a l r ( x ,  t)-O] ) 

a2 

= ,v p - ,-ff  { ( v  r)  t) -o1 }, (5) 

where overbars denote ensemble means, ~ is the molecular diffusivity, and U =  U(x, t), 
u--u(x, t) are, respectively, the mean and fluctuation in the velocity field. Like all 
equations for statistical properties of turbulent fields, equation (5) exhibits the closure 
problem. In this case the last terms on each side of the equation are not expressible exactly 
in terms of p. Progress can therefore be made from equation (5) only if these terms can be 
approximated by expressions involving p; such approximations are called closure hy- 
potheses and are inevitably empirical (and almost certainly incorrect - in a strict sense - 
given the present state of the art). Pope [16] gives a critical discussion of the closure 
hypotheses that have been applied to equation (5). 
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2. The basis of the presente work 

Many important papers on turbulence and turbulent diffusion have used exact solutions 
for a situation when the instantaneous velocity field T(x, t) is linear in the coordinates of 
x. While this idealized flow is applicable to real turbulent flows only when discussing 
relative motion over scales no greater than a few multiples of the Kolmogoroff microscale, 
results derived for it have proved extremely enlightening. Saffman [17] gave the general 
solution for a scalar field dispersing in such a flow. Here, to avoid great algebraic 
complications which add little to the ideas, only the special solution first given by 
Townsend [18] will be used. Chatwin and Sullivan [10] used this solution in discussing the 
structure of c--7(x, t) associated with a dispersing cloud of scalar contaminant. 

Within the neighbourhood of any moving fluid particle, the velocity field relative to 
that of this particle is composed of a solid-body rotation and a uniform strain, and the 
turbulent motion is statistically isotropic. When the initial distribution of the scalar 
concentration F(x, t) has spherical symmetry about the moving fluid particle, the solid 
body rotation has no effect on the statistical properties of F(x, t), including p(O; x, t). It 
is therefore sufficient to take axes coinciding with the instantaneous principal axes of the 
rate of strain tensor so that the velocity field T(x,  t) takes the form 

(6) 

where 

a 1 + a 2 + a 3 = 0 (7) 

to satisfy incompressibility. The values of the principal rates of strain a t (i = 1, 2, 3) are of 
order (c/p) 1/2 in standard notation, and their magnitudes change relatively slowly with t 
so that they will be supposed constant in what follows. However, as shown by Townsend 
[18], the solution given below can easily be amended when the rates of strain vary with 
time, and these amendments cause no significant change to the results presented here for 
p(0;  x, t). With the velocity field given by (6), the equation governing F(x, t) is 

OF aF OF OF [ ~2F ~2F a2F 

Oxl + -  
(8) 

with appropriate boundary and initial conditions. 
Here it will be supposed that there are no boundaries; thus 

r ( x ,  , ) - ~ 0  as [x I ~ o¢. (9) 

The most important initial conditions in practice are those in which there is a finite 
quantity Q of scalar, since other situations such as a continuous source can then be dealt 
with by superposition. The case when the scalar is distributed uniformly within a sphere is 
considered by Kowe [19] and, more briefly, in [20]. The solution of Townsend [18] is 
algebraically more convenient (since there are no singularities) and has 

_ 23/2Q ( 2~rlxl 2) (10) 
F(x ,  O ) -  - - ~ o  exp/ L2 , 
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where L 0 is a constant, characteristic of the initial spatial extent of the scalar cloud. The 
solution of (8), satisfying (9) and (10). was given in [18] and is 

F(x ,  t) 23/20 exp + - -  (11) 
L, L2L3 L2 ' 

where the Li = Li(t ) (i = 1, 2, 3) are given by 

L 2 =  ( L 2 +  4Z--~r ) e t i  exp(20/it) - 4~r----r-r0/~ (12) 

With this solution, the surfaces of constant scalar concentration are ellipsoids with 
semi-major axes L 1, L2, L 3. From (7) it is obvious that at least one of the ai is positive 
and at least one is negative. According to (12), the value of L~ when 0/i is positive increases 
with t, whereas that for a negative 0/~ approaches (4q ' / ' • / 10 / i l )  1/2 which is of order 
(~,r2/c) ~/4- the conduction cut-off length. Thus, qualitatively, there are two possibilities. 
When two of the 0/~ are positive the ellipsoids tend to become sheets of constant thickness 
and increasing area ("discuses"); when two of the 0/~ are negative the ellipsoids tend to 
become threads of constant cross-sectional area but increasing length ("cigars"). 

3. Some simple models for the p.d.f. 

As noted earlier, the p.d.f, p(O; x, t) can be defined only in relation to a specified 
ensemble of releases, and it is now necessary to consider possible ensembles involving the 
exact solution (11). At any point the directions of the principal axes of the rate of strain 
tensor are oriented randomly in space, and the simplest possible ensemble consists of a 
series of releases differing only in this orientation, which has an assigned probability 
distribution. In all other respects each release is identical, and, in each, the scalar 
concentration is given by (11) with respect to the appropriate axes for that release. 

Since the fine-scale structure of most 'turbulent flows is isotropic, it is natural first to 
consider the case where all orientations are equiprobable. Consider a point distance 
r - -  I xl from the origin, and suppose for the moment (without loss of generality) that 
0/1 << 0/2 << 0/3 SO that L 1 << L 2 << L 3. Then it is evident from (11) that, at this point, the 
perceived concentration is bounded below by 0mi n and above by 0ma x, where 

2~rr2 ] ( 2~rr2 1 
0mi n = `4 exp -- L] }, 0ma x m .4 exp -- L--'-~- l '  (13) 

with A = A(t) given by 

A( t ) = 23/2Q/( LaL2L3). (14) 

It is also evident geometrically, as shown schematically in Fig. 1, that the p.d.f, of the 
concentration can be obtained for this particular case of isotropy by considering the 
variation of concentration on a sphere with the distribution of concentration fixed in 
space. Indeed, suppose P(0; x, t) is the cumulative distribution function (c.d.f.) so that 

P(0;  x, t)---- P ( F ( x ,  t) ~ 0). (15) 
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Figure 1. Sketch illustrating the text discussion of the form of p for a point at a distance r = I x I from the centre 
of  an ellipsoid, the direction of whose principal axes are orientated randomly in space with an isotropic 
distribution. 

Then,  in the present case, P (0 ;  x, t) = P(0 ;  r, t) is the p ropor t ion  of  the surface area of  a 
sphere of radius r lying outside that ellipsoid on which F = 0, where F = F(x ,  t) is given 
by  (11) and 0 is any concentra t ion between Omi . and 0ma x. The p.d.f, p(O; x, t) is then of  
course given by the general formula 

p(O; x, t)=  P(0; ,,, t). (16) 

Even for this simplest case the algebraic details are complicated when Lt ,  L 2 ,  L 3 are all 
different. There are, fortunately,  two special cases which are very typical and illustrate the 
method.  These occur  when two of  the a i - a n d  hence two of  the L i - a r e  equal. Suppose first 
that  a 1 < 0 and that  a 2 = a 3 > 0, so that  the surfaces F = 0 tend to become sheets in the 
shape of  discuses. Wri t ing x 1 = r cos ~k, x2 = r sin Ik cos ~, x 3 = r sin Ik sin ~ gives F = 0 
when ~k = ~ko, where ( remembering that L 2 = L 3) 

cos2~k ° L2L 2 {ln(A/O) 1 }  (17) 
L~ - L 2 2rrr 2 L 2 for 0mi n -~ 0 ~ 0ma x . 

Hence  

1 for 0>/0max; 
P(O;x,t)= 1 - c o s ~ 0  for 0mi,<0~<0max; 

• 0 for 0~<0mi . .  

(18) 

Thus,  using (16), 

/ LIL3 (2 2[A 2 r2]/ 
p ( 8 ;  r , t ) =  (8~--~rg (L3-L1) ln(~-)---~- 

/ for Omin < 0 < 0max; 

0 for 0 < 0mi n and 0 > 0ma x. 

- 1 / 2  

(19) 

The  dependence of  p on r is shown explicitly in (19), while that on  t is conta ined in the 
expressions for L 1, L 3 and A given in (12) and (14). It  is however remarkable  that  there 
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are rescaled variables in terms of which (19) has a self-similar form. Thus define O and 
Omi n by 

0 0mi n 
O =Omax , emi n m Oma~- ' ( 2 0 )  

where 0mi n and 0ma x a r e  defined in (13). Simple manipulation then gives 

for O < Omi n and O > 1. 

for Omi n ~< ® < 1 ; (21) 

The other special case occurs when a I > 0 and o/2 = Ot 3 < 0;  in this case the surfaces F = 8 
tend to become threads in the shape of cigars. The calculation of p can be carried out in 
an analogous manner to that for discuses just illustrated. The result corresponding to (21) 
is 

/ ( 2 ~  ) { (ln[Omin//O])(ln Omin ) } 

0maxP(0; r, t ) = ~  for Omin<O~< 1; 
! 

0 for O < Omi n and O > 1. 

- 1 / 2  

(22) 

The results in (21) and (22) are shown in Fig. 2. Several points are worth making. Neither 
curve has anything like the behaviour of p.d.f.s, such as the Normal p.d.f., commonly 
encountered in other fields, and there are singularities at the end-points where O = Omi n 

and O = 1, even though the effects of molecular diffusion are fully included. For the 
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Figure 2. Non-dimensionalised form of the p.d.f, p(O; r, t) for the discus and cigar, given by equations (21) and 
(22) respectively. In this figure Omi n = 0.01. 
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~ r'= Omi n 
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el> e~ e] e~--.e n 

(b) (a) (c) 

Figure 3. Sketch showing a sphere radius r intersecting a set of ellipsoids on which the concentration ranges 
from (a) 0max to (c) 0mi n. Figure (b) shows how concentration varies with size of ellipsoid. 

discus, p has an infinite spike at O = 1 because, for this concentration, the sphere and 
discus intersect in a circle of radius L3; see Fig. 3(a). Conversely there is no spike at O = 1 
for the cigar since the intersection is only the end-point of a line. At ® = Omin, the 
situation is reversed as shown in Fig. 3(c). It is worth noting that for the discus there is a 
finite spike near Om~ . although the intersection is also at the ends of a line. The radius of 
curvature however is smaller at these points than for the cigar and this has a significant 
effect. 

Results like (21) and (22) hold for ensembles in which the orientations of the principal 
axes are distributed isotropicaUy. Another ensemble of interest is that when the axes are 
distributed axisymmetrically, which is the situation found, for example, in a jet flow. 
Consider, for simplicity, the two-dimensional shear field T = (atx t, Ot2X2) (SO that a t + a 2 
= 0) where x I = r cos ~/,, x 2 = r sin ~k. With the initial distribution 

F (x ,  0 ) = - ~  e x p ( - 2 ~ r r 2  / (23) 

the solution of equation (18) (ignoring the variation in the x 3 component) is given by 

m q_ "~2 
r ( x ,  t ) = A  exp -2~r  L~ L~ ' (24) 

where the Li(t ) are given by equation (12) and A(t)= 2Q/(LIL2). Equation (24) implies 
that curoes of constant F are ellipses. Taking a 2 = - a  I > 0, which gives an ellipse with 
semimajor axis L 2, it follows that r = O when ff = q~0, where ~k0 is defined by equation 
(17) replacing L 3 with L 2. 

We now choose a suitable distribution p(fl) for 8, the angle of the axis L 2 to a fixed 
direction in the flow, as illustrated in Fig. 4. A simple axisymmetric distribution is the 
circular distribution 

1 
p(f l )= rlo(1, exp(cos for 0~<fl~<ir, (25) 

where I 0 is a modified Bessel function of order zero. This distribution is bimodal with 



224 

/ 

/ /  ~ .It,. 

Figure 4. An ellipse whose major axis is inclined at an angle fl to a fixed direction in an axisymmetric flow. 

maximum values at fl = 0, ~r which are therefore preferred directions for L 2. A point with 
polar coordinates (r, 3') lies outside the ellipse on which F = 0 if and only if 3' + (~r/2) - 
~k0 ~</3 ~< 3' + (~r/2) + ~b 0. Thus 

P(O; r, 7, t ) =  

1 for 0 >~ 0max; 

1 fv+ 2 +q'"exp(cos 2/3)d/3 
~rlo (1) Jr+ 2 -~" 

for 0mi. ~< 0 ~ 0max; 

0 for 0~<0mi n. 

(26) 

Use of the rescaled variables defined in equation (20) then gives, by (16) 

"trlo(1)Omaxp(O ; r, y, t) = (exp[--cos 2(3' + 4'o)] + exp[--cos 2(y -- ~ko)] ) 

0 {In 0 - t/2 
(27) 

The equivalent p.d.f, for an isotropic distribution of axes p ( f l ) =  1/(2~r) is given by 

~0rnax?(0 ; r, t ) =  ~0 
O( ln  O ( l n [ _ ~ ] ) } l / 2  . (28) 

Figure 5 shows the graphs of (27) (broken lines) and (28) (solid line) with O m i  n ~- 0.01 and 
with 3' ranging from 0 (for points lying along the preferred direction) to ~r/2 (for points 
lying at right angles to it). It should be noted that both the curves (27) and (28) have a 
singularity near the values O = Ornin  and O = 1. This is a result of the simple geometry in 
the flow with the circle radius r intersecting the ellipse at the ends of a line of length 2L t 
and 2L 2. The variation of p with y is obvious; as 3' increases to rr/2, the point (r, 7) 
moves away from the most probable position of the ellipse with a subsequent increase in 
the probability of encountering lower concentrations and a decrease in p for higher 
concentrations. With this effect in mind, only the isotropic distribution of axes will be 
considered in the following section, since the effect of an axisymmetric distribution can be 
predicted. 
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Figure 5. The broken lines show the p.d.f, given by equation (27) for a point (r, y) in a two dimensional flow. 
The solid line is the corresponding isotropic distribution-equation (28). 

4. Extensions of the simple models 

The relatively simple exact solutions in Section 3 can be used to generate new solutions in 
many ways. For example the principal rates of strain can be regarded as random variables, 
and assigned probability distributions. Here two other extensions are discussed, each 
designed to incorporate other features of real turbulence and turbulent diffusion. 

(i) The form of p must be determined in a framework which is fixed relative to some 
origin in the flow because most measurements of p are made in this way. P.d.f.s are 
therefore constructed for ensembles in which the centre of mass I ~1 is not fixed but 
moves randomly with a prescribed distribution p ( [~ [ ) .  

(ii) The number of ensembles in any one realization is not limited, as shown by careful 
inspection of the detailed structure in a real flow which is seen to be made up of 
several scalar spots at different stages of dispersion. A flow is examined containing 
several scalar clouds within each of which the concentration field is described by 
(11). 

The variability of the position of the centre of mass of a cloud increases the complexity of 
the problem since the simple geometry that leads to relatively tractable results like (21) 
and (22) is destroyed. It is the expected probability P(0;  r, t I I~ I) that the concentration 
at a point r = I xl from a fixed origin is less than a value 0, given that the centre of the 
cloud is at a point J£1, that must now be calculated. It follows that P(0; r, t) is then 

P(O; r, t )  =f l~ lP(O;  r, tl I ~ l ) P ( l ~ l ) d V ( l ~ l ) -  (29) 

This procedure is perhaps best illustrated by considering the following concentration field 

F (x ,  t)  = .4  e x p { - 2 ~ r  
, i , ~ 2  2 2 (x, - -  I I /  X 2  + X 3  

, (30)- 
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~X I 

Figure 6. A discus whose centre of  mass lies at a distance I i" I f rom a fixed origin O intersecting a sphere radius r 
at points  which subtend angles qq, I/'2 with the x 1 axis. 

where 0/2 = a 3 > 0 ,  a I < 0 -- which corresponds to a discus whose centre is displaced a 
distance I~1 from a fixed origin O along the positive xt axis; see Fig. 6. Following the 
procedure discussed in Section 3 we find F = 0 when ~k = ~kl and when q~ = ~k2, where the 
qJ satisfy 

{ [ r2sin2+ ) Aexp (rc°sq'-1 l)2+ - =0. (3a) L, 1.32 
" ' \ ,  

For an isotropic distribution of L 1 and L3, P(O; r, t]l x I) is the portion of the surface 
area of a sphere radius r which lies outside the discus on which F = 0 and is calculated 
from the values ~1 and ~2. It only remains to choose a function p(l~l) in order for 
P(0; r, t) to be found from (16) and (29). The detailed mathematics for several forms of 
p ( l ~ [ )  is discussed in Kowe [19]. Here we give the results for the spherical normal 
distribution with 

1 .  ( 1~12/ for I~1 >~0, (32) 
P ( I ~ I )  = (21r)3/2o3eXp 202 J 

where o is a measure of the wandering of I~1. Thus 

p(O; r, t)= 

,,: l': x 
2(2¢ro2)3/2rO , -  

for r ~ / )2 ;  

LIL 3 [ fD,+r 2 e_XZ/t2o2)(x2_D~)l/2dx 
2 ( 2 , / r o E ) 3 / E r O  [ ar-DI X 

+2fr-D'x2e-X2/'2°2'(x2-D;}'/Edx]"93 

for r >/D E. 

(33) 
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where  

D, = L,{ ~--~In( ; ) ) '/2 (34) 

is the semi-minor  axis of  the discus on which F = O. 

D 2 = L 3 D I / L 1 ,  (35) 

is the semi-major  axis, and 

L 3 - -  L 1 ) 1 ' / 2  
D , =  ( :  ~ / L, (,2_ nT)j . 

(36) 
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Figure 7. Some typical plots of p(O; r, t) for a wandering discus, generated by varying the parameters r / L  1 and 
a / L 1  in equation (33). (a), (b), (c) have r /L1  = 0.1 with: (a) o /L1  = 0.05¢~-, (b) o / L ]  = 0.15¢'2-, (c) o / L  1 = 
0.4¢~-. (d), (e), (f) have r / L  1 = 0.5 with: (d) o / L l  = 0.05v~, (e) o / L i  = 0.15v~, (f) a / L i  = 0.4~/2. (g), (h), (i) 
have r / L I  = 0.9 with: (g) o / L 1  = 0.05Vr2, (h) o / L1  = 0.15v~-, (i) o /L1  = 0.4¢r2. 
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Figure 7 shows sketches of p defined in equation (33). The variation with r / L l  and o / L  1 
is of prime interest; hence the variation with t is fixed by setting L 3 = 2L 1. The effect of 
r / L  1 on p can be seen in Figs. 7a, d., g. For small o the discus is effectively fixed at the 
origin and we therefore expect p to have similar features to the plot in Fig. 2, i.e. an 
infinite spike n e a r  0,nax ( O  = 1 in Fig. 2) and a smaller peak n e a r  0min, where 0ma x and 0rnin 
are defined by (13). When r = 0.1L1, 0mi . ---0ma x and the distribution appears to be one 
skewed spike. For intermediate values of r (Fig. 7d) 0ma x and 0mi n decrease since points on 
the surface of the sphere, radius r, intersect large ellipsoids of lower concentrations and 
the bimodality becomes more obvious. The spike at 0mi . increases due to the decrease in 
the radius of curvature of the discus at the end of a line of length approximately 2L],  an 
effect which was noted in Section 3. As o increases for a fixed value of r (see for example 
Figs. 7a, b, c) the distribution broadens as in Fig. 7b, since the range of concentration 
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measured at a point r increases as the discus wanders across it. Eventually, for large 
values of o, the point is most likely to lie in areas near zero concentration. This is reflected 
by the large spike near O = 0 in Fig. 7c. 

The next step is to examine the effect of several scalar clouds in the same flow. It is 
unlikely in practice that each cloud will have the same time of dispersion so that the 
concentration A (=  A(t)) will differ in each, having a maximum value A 0 = 23/2Q/L3o. 
The quantity A, therefore, can be regarded as a random variable in such a flow and is 
given a p.d.f, p(A). Figure 8 shows the graphs of the p.d.f, for an ensemble of wandering 
discuses, given by integrating (33) over A, with p(A) having the truncated normal 
distribution 

p ( A ) = ( 2 ) ' / 2 e x p ( ( A - 2 o ~ 2 ' ) 2 ) / o ' ( e r f ( ~ )  + erf( o -~2  ) / 

for 0 < A < A 0, (37) 

where o', #' are constants. Full mathematical details of the formulation of p are given in 
Kowe [19]. 

It is interesting to compare the graphs in Fig. 8 with those in Fig. 7, which are drawn 
for the same values or r/L 1, o/L 1, fixed o'/A o and varying ix'/Ao. One immediate 
observation is that whilst the geometrical features of the p.d.f.s in Fig. 7 such as the 
bimodality are still in evidence, the plots in Fig. 8 are much smoother with sharp spikes 
becoming rounded, and in the case of the peak near Omax in Fig. 8b, disappearing 
altogether. This effect is due to the averaging process, and makes the plots in Fig. 8 
qualitatively closer to measured values for p. 

5. Discussion and conclusion 

It has already been noted that in general the exact p.d.f.s derived in this paper are often 
very different from the standard p.d.f.s encountered in many elementary statistics courses; 
for example several of the graphs of p(O; x, t) show bimodality. That measured p.d.f.s 
have, at least qualitatively, the same features is evident from Fig. 9 taken from [14], which 
shows p(O; x, t) at four different radial positions in a particular cross-section of a 
methane jet entraining air. One principal motivation of the present work was to model the 
graphs in Fig. 9, and the results of this exercise are described in [21] and, in more detail, in 
[191. 

Here it is more appropriate to emphasize a more general application of the results 
derived in this paper, and one of widespread potential importance for the mathematical 
modelling of engineering problems. As noted earlier, it is important in many situations to 
understand the behaviour of p(8; x, t), and, ultimately, this will require knowledge of 
how to make acceptable approximations for the "non-closed" terms in (5). An indispensa- 
ble tool in developing such approximations is to compare the results of different proposals 
with p.d.f.s obtained in other ways. In many respects the p.d.f.s obtained theoretically in 
the present paper are ideal for this validation procedure since they have been derived for 
simple flows and, especially in the case of the results of Section 3, they are exact. 
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Figure 9. Measurements of p(O; x, t) in a methane jet for several radial displacements r at a distance 10d 
downstream, where d is the jet diameter. The units are arbitrary. (a) r / d =  0, (b) r / d  = 1.3, (c) r i d  = 1.5, (d) 
r / d =  1.8. 
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